
(c) Solve the following problem using graphical method:
$\operatorname{Max} z=40 x_{1}+80 x_{2}$

$$
\begin{aligned}
& \text { s.t. } \rightarrow \quad 2 x_{1}+3 x_{2} \leq 48 \\
& x_{1} \leq 15 \\
& x_{2} \leq 10 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

(d) If $y=f(x)=\frac{p x+q}{r x-p}$, then show that $f(y)=x$.
(e) Show that the maximum value of $x^{3}+\frac{1}{x^{3}}$ is less than its minimum value.
(f) Evaluate : (i) $\int \frac{\log x}{(1+\log x)^{2}} d x$, (ii) $\int \frac{(2-x)^{3}}{x} d x$.
2. Answer any two from the following questions :
(a) (i) Without expanding the determinant prove that:

$$
\left|\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right|=0 .
$$

(ii) For the Matrix $A=\left[\begin{array}{ccc}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & -1\end{array}\right]$, find $\operatorname{Adj} A$ and A^{-1}.
(b) (i) A machine costs the company Rs. 97,000 and its effective life is estimated to be 12 years. If the scrap realises Rs. 2,000 only, what amount should be retained out of profits at the end of each year to accumulate at C-I at 5% p.a. to replace the machine at the end of its life.
(ii) Examine continuity of the function :

$$
g(x)=\left\{\begin{array}{cl}
2-3 x & \text { when } x>0 \\
2 & \text { when } x=0 \\
2+3 x & \text { when } x<0
\end{array} \text { at } x=0 .\right.
$$

(c) (i) Evaluate : (x) $\lim _{x \rightarrow \alpha} \frac{3 x^{2}-4 x+6}{x^{2}+6 x-7}$, (y) $\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}$.
(ii) A firm produces x tonnes of valuable metal per month at a total cost c given by : $c=$ Rs. $\left(\frac{1}{3} x^{3}-5 x^{2}+75 x+10\right)$. Find at what level of output the marginal cost attains its minimum.
(d) (i) If $z=\frac{x^{2} y^{2}}{x+y}$, prove that $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=3 z$.
(ii) Find $\frac{d y}{d x}$; when $x^{y} \cdot y^{x}=1$.
(iii) Evaluate : $\int \frac{\log x}{(1+\log x)^{2}} d x$.

বঙ্গ|নুবাদ

১। যেকোনো চারটি প্রশ্নের উত্তর দাও :

$$
৫ \times 8=২ ০
$$

(ক) একটি ব্যাঙ্ক 9,000 টাকার একটি নির্দিষ্ট মেয়াদী আমানতের জন্য 10 বছর পরে 20,000 টাকা প্রদান করে। ব্যাঙ্ক যদি 6 মাস অন্তর চত্রবৃদ্ধি হারে সুদ প্রদান করে থাকে, তবে সুদের হার নির্ণয় কর।
(খ) यদি $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 2 & 1 & 0\end{array}\right]$ এবং $B=\left[\begin{array}{rr}1 & 3 \\ 2 & 0 \\ -1 & 1\end{array}\right]$ হয় তবে $A B$ এবং $(A B)^{T}$ निর্ণয় কর, দেখাও যে $(A B)^{T}=B^{T} \cdot A^{T}$
(গ) লেখচিত্র পদ্ধতি ব্যবহার করে নীচের সমস্যাটির সমাধান কর :
$\operatorname{Max} z=40 x_{1}+80 x_{2}$
s.t. $\rightarrow 2 x_{1}+3 x_{2} \leq 48$
$x_{1} \leq 15$
$x_{2} \leq 10$

$$
x_{1} \geq 0, \quad x_{2} \geq 0
$$

(ঘ) यদি $y=f(x)=\frac{p x+q}{r x-p}$; তবে দেখাও যে, $f(y)=x$ ।

(Б) মূল্যায়ন কর : (i) $\int \frac{\log x}{(1+\log x)^{2}} d x$, (ii) $\int \frac{(2-x)^{3}}{x} d x$ ।

২। যেকোনো দুটি প্রশ্নের উত্তর দাও :
(ক) (অ) বিস্ত্তি না করে প্রমাণ কর যে, $\left|\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right|=0$ ।
(আ) यদি $A=\left[\begin{array}{ccc}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & -1\end{array}\right]$ একটি বর্গ Matrix হয়, তবে $\operatorname{Adj} A$ ও A^{-1} নির্ণয় কর।
(খ) (অ) একটি মেশিন ক্রয় করতে কোন কোম্পানীকে 97,000 টাকা দিতে হয় এবং ধরা হয় যে উহার কাযকরী আয়ু 12 বছর। কার্यকরী আয়ুষ্কাল অন্তে মেশিনটির ধাতুমূল্য 2,000 টাকা হলে, প্রতি বছরান্তে কোম্পানীর লভ্যাংশ হতে কি পরিমাণ অর্থ বার্যিক 5\% চক্রবৃদ্ধি হার সুরে জমা রাখতে হবে?
(আ) $x=0$ বিন্দুতে সন্ততঃ কিনা যাচাই কর:

$$
g(x)=\left\{\begin{array}{cl}
2-3 x & \text { when } x>0 \\
2 & \text { when } x=0 \\
2+3 x & \text { when } x<0
\end{array} \text { at } x=0\right. \text { । }
$$

(গ) (অ) মূন্যায়ন কর : (i) $\lim _{x \rightarrow \alpha} \frac{3 x^{2}-4 x+6}{x^{2}+6 x-7}$, (ii) $\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}$ ।
(আ) একটি উৎপাদনকারী সংস্থা প্রতি মাসে x টন পণ্য উৎপাদন করে যার উৎপাদন ব্যয় $c=$ Rs. $\left(\frac{1}{3} x^{3}-5 x^{2}+75 x+10\right)$ । উৎপাদনের কেেন স্তরে প্রান্তিক উৎপাদন ব্যয় সর্বনিম্ন হবে নির্ণয় কর।
(ঘ) (ज) यদি $z=\frac{x^{2} y^{2}}{x+y}$ হয় তবে প্রমাণ কর যে, $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=3 z$ । (আ) $\frac{d y}{d x}$ निর্ণয় কর; যখন $x^{y} \cdot y^{x}=1$ ।
(ই) মূল্যায়ন কর: $\int \frac{\log x}{(1+\log x)^{2}} d x$ ।

